Cost-sensitive learning based on Bregman divergences

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive mixture methods based on Bregman divergences

Article history: Available online 26 September 2012

متن کامل

Clustering with Bregman Divergences

A wide variety of distortion functions, such as squared Euclidean distance, Mahalanobis distance, Itakura-Saito distance and relative entropy, have been used for clustering. In this paper, we propose and analyze parametric hard and soft clustering algorithms based on a large class of distortion functions known as Bregman divergences. The proposed algorithms unify centroid-based parametric clust...

متن کامل

On the Centroids of Symmetrized Bregman Divergences

In this paper, we generalize the notions of centroids and barycenters to the broad class of information-theoretic distortion measures called Bregman divergences. Bregman divergences are versatile, and unify quadratic geometric distances with various statistical entropic measures. Because Bregman divergences are typically asymmetric, we consider both the left-sided and right-sided centroids and ...

متن کامل

Metrics Defined by Bregman Divergences †

Bregman divergences are generalizations of the well known Kullback Leibler divergence. They are based on convex functions and have recently received great attention. We present a class of “squared root metrics” based on Bregman divergences. They can be regarded as natural generalization of Euclidean distance. We provide necessary and sufficient conditions for a convex function so that the squar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2009

ISSN: 0885-6125,1573-0565

DOI: 10.1007/s10994-009-5132-8